

GraphI - Python Graph Interface and Types

[image: Code Health]
 [https://landscape.io/github/MaineKuehn/graphi/master][image: Documentation Status]
 [http://graphi.readthedocs.io/en/latest/?badge=latest]
Documentation Topics Overview:

	Quick Usage Reference

	Changelog

	Module Index

GraphI is a lightweight graph library - it is suitable to model networks, connections and other relationships.
Compared to other graph libraries, GraphI aims for being as pythonic as possible.
If you are comfortable using list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict] or other types, GraphI is intuitive and straight-forward to use.

create a graph with initial nodes
airports = Graph("New York", "Rio", "Tokyo")
add connections between nodes
airports["New York":"Rio"] = timedelta(hours=9, minutes=50)
airports["New York":"Tokyo"] = timedelta(hours=13, minutes=55)

At its heart, GraphI is built to integrate with Python’s data model.
It natively works with primitives, iterables, mappings and whatever you need.
For example, creating a multigraph is as simple as using multiple edge values:

add multiple connections between nodes
airports["Rio":"Tokyo"] = timedelta(days=1, hours=2), timedelta(days=1, hours=3)

With its general-purpose design, GraphI makes no assumptions about your data.
You are free to use whatever is needed to solve your problem, not please data structure.

Frequently Asked Questions

	Yet another graph library?

	The goal of GraphI is not to be another graph library, but to provide an intuitive graph interface.
Working with complex graphs should be as easy for you as working with any other primitive type.

	Where are all the algorithms?

	First and foremost, GraphI is designed for you to work on graph data instead of pre-sliced storybook data.
GraphI implements only algorithms that

	are fundamental building blocks for advanced algorithms, and/or

	benefit from knowledge of internal data structures.

	What about performance?

	At its core, GraphI uses Python’s native, highly optimized data structures.
For any non-trivial graph algorithm, the provided performance is more than sufficient.

From our experience, performance critical code is best run with PyPy [https://pypy.org].
This will not just optimize isolated pieces, but the actual combination of your algorithm and GraphI as a whole.

Indices and tables

	Index

	Module Index

	Search Page

Documentation built from graphi 0.2.0 at Jul 26, 2018.

Quick Usage Reference

GraphI is primarily meant for working directly on graph data.
The primitives you need to familiarise yourself with are

	graphs, which are extended containers,

	nodes, which are arbitrary objects in a graph,

	edges, which are connections between objects in a graph, and

	edge values, which are values assigned to connections in a graph.

[image: \mathtt{ \underbrace{\vphantom{\bigl[}\mathtt{flighttime}}_\mathtt{graph} [\overbrace{ \underbrace{\vphantom{\bigl[}\mathtt{Berlin}}_\mathtt{node} : \underbrace{\vphantom{\bigl[}\mathtt{London}}_\mathtt{node} }^{edge}] = \underbrace{\vphantom{\bigl[}\mathtt{3900}}_\mathtt{value} }]

This documentation page gives an overview of the most important aspects.
The complete interface of GraphI is defined and documented by Graph.

Creating Graphs and adding Nodes

You can create graphs empty, via cloning, from nodes or with nodes, edges and values.
For many use-cases, it is simplest to start with a set of nodes:

from graphi import graph

planets = graph("Earth", "Jupiter", "Mars", "Pluto")

Once you have a graph, it works similar to a set [https://docs.python.org/3/library/stdtypes.html#set] for nodes.
You can simply add() and discard() nodes:

planets.add("Venus")
planets.add("Mercury")
planets.discard("Pluto")

Working with Edges and Values

To really make use of a graph, you will want to add edges and give them values.
Simply pick a connection from a node to a node and assign it a value:

store the average distance between planets
planets["Earth":"Venus"] = 41400000

An edge is always of the form start:end, but values can be of arbitrary type.
For example, you can easily add multiple values for a single edge using containers:

add multiple values as an implicit tuple
planets["Earth":"Venus"] = 41400000, 258000000
add multiple values as an explicit, mutable list
planets["Earth":"Mars"] = [78000000, 378000000]

The :-syntax of edges is not just pretty - it ensures that you never, ever accidentally mix up nodes and edges.
This allows you to safely use the same graph[item] interface for nodes and edges.

If you need to define an edge outside of graph accesses, explicitly use Edge:

from graphi import Edge

if Edge["Venus":"Earth"] in planets:
 print("Wait, isn't there a pattern for this?")

Graphs as Python Containers

GraphI is all about letting you handle graphs with well-known interfaces.
A graph is a container indexed by either nodes or edges:

print(planets["Venus":"Earth"])
del planets["Jupiter"]

Even though it contains nodes, edges and values, it presents its nodes first - similar to keys in a dict [https://docs.python.org/3/library/stdtypes.html#dict].
However, you can efficiently access its various elements via views:

print("My father only told me about %d of our planets." % len(planets))
print("But I looked up %d distances between planets:" % len(planets.edges())
for planet_a, planet_b, distances in planets.items():
 print(" %s to %s: %s" % (planet_a, planet_b, '-'.join(distances)))

chainlet Changelog

0.2.0 2017-07-31

	Notes

	Definition of primary interface, algorithms (Graph.neighbours) will be revised

	New Features

	Added AdjacencyGraph

	Major Changes

	Defined graph container interface

	Minor Changes

	Added documentation

graphi

	graphi package
	Subpackages
	graphi.compatibility package
	Submodules

	graphi.types package
	Submodules

	Submodules
	graphi.abc module

	graphi.edge module

graphi package

Subpackages

	graphi.compatibility package
	Submodules
	graphi.compatibility.python2 module

	graphi.compatibility.python3 module

	graphi.types package
	Submodules
	graphi.types.adjacency_graph module

Submodules

	graphi.abc module

	graphi.edge module

graphi.compatibility package

	
graphi.compatibility.compat_version = sys.version_info(major=2, minor=7, micro=12, releaselevel='final', serial=0)

	python version this module has been finalized for

Submodules

	graphi.compatibility.python2 module

	graphi.compatibility.python3 module

graphi.compatibility.python2 module

	
class graphi.compatibility.python2.ABCBase

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Helper class that provides a standard way to create an ABC using inheritance.

A helper class that has ABCMeta as its metaclass. With this class,
an abstract base class can be created by simply deriving from ABC,
avoiding sometimes confusing metaclass usage.

Note that the type of ABC is still ABCMeta, therefore
inheriting from ABC requires the usual precautions regarding metaclass
usage, as multiple inheritance may lead to metaclass conflicts.

New in version 3.4.

Changed in version 3.3: Subclasses can use register() as a Decorator.

	
classmethod register(subclass)

	Register subclass as a “virtual subclass” of this ABC.

Changed in version 3.3: Returns the registered subclass, to allow usage as a class decorator.

graphi.compatibility.python3 module

graphi.types package

Submodules

	graphi.types.adjacency_graph module

graphi.types.adjacency_graph module

graphi.abc module

	
class graphi.abc.AdjacencyList

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict], _abcoll.MutableMapping

Edge values of nodes to a node in a graph

This represents edges in a graph originating from node as a mapping to their values.
For example, the edge graph[a:b] = c corresponds to adjacency[b] = c for node a.

	
exception graphi.abc.AdjacencyListTypeError(item)

	Bases: exceptions.TypeError

AdjacencyList set with an incorrect type

	
exception graphi.abc.EdgeError

	Bases: exceptions.Exception

Graph edge not found

	
class graphi.abc.EdgeView(graph)

	Bases: graphi.abc.GraphView

View on the edges in a graph

	
class graphi.abc.Graph(*source, **kwargs)

	Bases: _abcoll.Container

Abstract Base Class for graphs representing values of edges between nodes

A Graph is a container for primitive nodes and edges.
There are three types of elements handled by a graph:

	primitive nodes,

	slice-like edges as pairs of nodes, and

	primitive edge values.

Both nodes and edge values are conceptually similar to keys and values of dict [https://docs.python.org/3/library/stdtypes.html#dict].
However, the concept of node pairs as edges adds additional functionality.
The fixed relation between arbitrary nodes a, b and the directed pair a:b creates two value-type layers:

	each node is mapped to all its outgoing edges,

	each edge is mapped to the respective edge value.

In short, graph[a] provides a collection of edges originating at a,
while graph[a:b] provides the specific edge value from a to b.

Note

Many interfaces return the rich Edge type for its added usability.
To access an edge value, using slice [https://docs.python.org/3/library/functions.html#slice] such as graph[a:b] is sufficient, however.

Similar to Mappings, nodes are the primary keys of a Graph.
As a result, the container interfaces, such as iter and len, operate on nodes.
In general, nodes can be of arbitrary type as long as they are hashable [https://docs.python.org/3/glossary.html#term-hashable].

By default, edges in a Graph are directed and unique:
The edges represented by graph[a:b] and graph[b:a] are separate with opposite direction.
Each edge is unique, i.e. there is only one edge graph[a:b].
A loop is represented by the edge graph[a:a].
The edge entities stored in the graph may be arbitrary objects.

As such, the interface of Graph defaults to describing a directed graph.
However, other types of graph can be expressed as well.
These generally do not form separate types in term of implementation.

Multigraphs allow for multiple edges between pairs of nodes.
In this case, all edge values are containers (such as list [https://docs.python.org/3/library/stdtypes.html#list] or set [https://docs.python.org/3/library/stdtypes.html#set]) of arbitrary size.
Whether a Graph is a graph of containers or a multigraph depends on the context.

Undirected Graphs do not distinguish between graph[a:b] and graph[b:a].
This can be enforced by symmetry of edge values, which guarantees that graph[a:b] == graph[b:a] always applies.

	
g.undirected

	Indicates whether Graph g is guaranteed to be undirected, having only
symmetric edge values. If True, g[a:b] is g[b:a] for any nodes a and b
in g; the graph enforces this, e.g. g[a:b] = c implies g[b:a] = c.
If False, symmetric edges are allowed but not enforced.

Read-only unless explicitly indicated otherwise.

There are several ways to initialise a new graph;
their main difference is which element types are left empty.

	
Graph()

	Create a new empty graph.
No nodes, edges or values are filled in.

	
Graph(graph)

	Create a new graph with all nodes, edges and values of graph.
The resulting graph is a shallow copy of graph - the identity of elements is preserved.

	
Graph(a, b, c, ...)

	
Graph([a, b, c, ...])

	
Graph({a, b, c, ...})

	
Graph(<iterable for a, b, c, ...>)

	Create a new graph with nodes a, b, c, d, and so on.
No edges or values are created explicitly.

	
Graph({a: {b: ab_edge, c: ...}, b: {a: ab_edge, ...}})

	
Graph({a: AdjacencyList({b: ab_edge, c: ...}), b: AdjacencyList(...), ...})

	Create a new graph with nodes a, b, c, and so on.
Initialize edges to graph[a:b] = ab_edge, graph[b:a] = ba_edge, and so on.

Note

If only a single argument is provided, graph and mapping initialization is preferred over iterable initialisation.
To initialize a graph with a graph or mapping as the sole node, wrap it in an iterable, e.g. Graph([graph]).

All implementations of this ABC guarantee the following operators:

	
len(g)

	Return the number of nodes in the graph g.

	
g[a:b]

	Return the value of the edge between nodes a and b. Raises EdgeError if
no edge is defined for the nodes. Undirected graphs guarantee g[a:b] == g[b:a].

	
g[a:b] = value

	Set the value of the edge between nodes a and b to value for graph g.

	
del g[a:b]

	Remove the edge and value between nodes a and b from g. Raises
EdgeError if the edge is not in the graph.

	
g[a]

	Return the edges between nodes a and any other node as an AdjacencyList
corresponding to {b: ab_edge, c: ac_edge, ...}. Raises NodeError if
a is not in g.

	
g[a] = None

	
g[a] = a

	
g.add(a)

	Add the node a to graph g if it does not exist. Do not add, remove or modify existing edges.
Graphs for which edges are computed, not set, may create them implicitly.

	
g[a] = {}

	
g[a] = AdjacencyList()

	Add the node a to graph g if it does not exist. Remove any existing
edges originating at a from graph g.

	
g[a] = {b: ab_edge, c: ac_edge, ...}

	
g[a] = AdjacencyList(b=ab_edge, c=c_edge)

	Add the node a to graph g if it does not exist. Set the value of the edge between
nodes a and b to ab_edge, between a and c to ac_edge, and so on.
Remove any other edge from a. Raises NodeError if any of b,
c, etc. are not in g.

	
del g[a]

	Remove the node a and all its edges from g. Raises
NodeError if the node is not in the graph.

	
a in g

	Return True if g has a node a, else False.

	
Edge[a:b] in g

	
Edge(a, b) in g

	Return True if g has an edge from node a to b, else False.

	
iter(g)

	Return an iterator over the nodes in g.

In addition, several methods are provided. While methods and operators for
retrieving data must be implemented by all subclasses, methods for
modifying data may not be applicable to certain graphs.

	
add(node)

	Safely add a node to the graph, without modifying existing edges

If the node is not part of the graph, it is added without any explicit edges.
If the node is already present, this has no effect.

Note

Graphs which compute edges may implicitly create new edges if node is new to the graph.

	
clear()

	Remove all elements from this graph

	
copy()

	Return a shallow copy of this graph

	
discard(item)

	Remove a node or edge from the graph if it is a member

	Parameters

	item – node or edge to discard from the graph

	
edges()

	Return a new view of the graph’s edges

	Returns

	view of the graph’s edges

	Return type

	EdgeView

	
get(item, default=None)

	Return the value for node or edge item if it is in the graph, else default. If
default is not given, it defaults to None, so that this method never
raises a NodeError or EdgeError.

	Parameters

	
	item – node or edge to look up in the graph

	default – default to return if item is not in the graph

	
items()

	Return a new view of the graph’s edges and their values

	Returns

	view of the graph’s edges and their values

	Return type

	ItemView

	
neighbourhood(node, distance=None)

	Yield all nodes to which there is an edge from node in the graph

	Parameters

	
	node – node from which edges originate.

	distance – optional maximum distance to other nodes.

	Returns

	iterator of neighbour nodes

	Raises

	NodeError – if node is not in the graph

When distance is not None, it is the maximum allowed edge value.
This is interpreted using the <= operator as graph[edge] <= distance.

If there is a valid edge graph[node:node] <= distance, then node
is part of its own neighbourhood.

	
nodes()

	Return a new view of the graph’s nodes

	Returns

	view of the graph’s nodes

	Return type

	NodeView

	
undirected = False

	whether this graph is undirected, having only symmetric edges

	
update(other)

	Update the graph with the nodes, edges and values from other,
overwriting existing elements.

	Parameters

	other (Graph or ItemView) – graph or items from which to pull elements

	
values()

	Return a new view of the values of the graph’s edges

	Returns

	view of the values of the graph’s edges

	Return type

	ValueView

	
class graphi.abc.GraphView(graph)

	Bases: _abcoll.Sized

Dynamic view on the content of a Graph

View objects represent a portion of the content of a graph.
A view allows to work with its scope without copying the viewed content.
It is dynamic, meaning that any changes to the graph are reflected by the view.

Each view works only on its respective portion of the graph.
For example, edge in nodeview will always return False.

	
len(graphview)

	Return the number of nodes, node pairs or edges in the graph.

	
x in graphview

	Return True if x is a node, node pair or edge of the graph.

	
iter(graphview)

	Return an iterator over the nodes, node pairs or edges in the graph.

Each view strictly defines the use of nodes, edges or values.
As such, edges are safely represented as a tuple of start and end node.

	
undirected

	

	
class graphi.abc.ItemView(graph)

	Bases: graphi.abc.GraphView

View on the edges and values in a graph

Represents edges and their value as a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (tail, head, value).
For example, the edge graph[a:b] = c corresponds to the item (a, b, c).

	
exception graphi.abc.NodeError

	Bases: exceptions.Exception

Graph node not found

	
class graphi.abc.NodeView(graph)

	Bases: graphi.abc.GraphView

View on the nodes of a graph

	
class graphi.abc.ValueView(graph)

	Bases: graphi.abc.GraphView

View on the values of edges in a graph

graphi.edge module

	
class graphi.edge.Edge(start, stop, step=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An edge in a graph as a pair of nodes

	Parameters

	
	start – the start or tail of an edge

	stop – the stop or head of an edge

	step – currently unused

This is a verbose interface for creating edges between nodes for use in a graph.
It allows using slice notation independent of a graph:

>>> atb = Edge[a:b]
>>> a2b = Edge(a, b)
>>> graph[a2b] = 1337
>>> graph[a:b] == graph[atb] == graph[a2b] == graph[Edge[a:b]] == graph[Edge(a, b)]
True

A Edge can also be used for explicit containment tests:

>>> Edge[a:b] in graph
True

In addition to their slice-like nature, Edge is iterable and indexable.
This allows for easy unpacking:

>>> edge = Edge[a:b]
>>> tail, head = edge

Note

This class creates a representation of an edge as a connection between nodes.
Edge values can be arbitrary objects.

Warning

Even though Edge behaves like a slice [https://docs.python.org/3/library/functions.html#slice] in graphs,
builtin containers such as list [https://docs.python.org/3/library/stdtypes.html#list] cannot use a Edge.

	
start

	

	
stop

	

	
class graphi.edge.EdgeMeta

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass for Edge to support Edge[a:b]

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graphi	

 	
 	
 graphi.abc	

 	
 	
 graphi.compatibility	

 	
 	
 graphi.compatibility.python2	

 	
 	
 graphi.edge	

 	
 	
 graphi.types	

Index

 A
 | C
 | D
 | E
 | G
 | I
 | N
 | R
 | S
 | U
 | V

A

 	
 	ABCBase (class in graphi.compatibility.python2)

 	add() (graphi.abc.Graph method)

 	
 	AdjacencyList (class in graphi.abc)

 	AdjacencyListTypeError

C

 	
 	clear() (graphi.abc.Graph method)

 	
 	compat_version (in module graphi.compatibility)

 	copy() (graphi.abc.Graph method)

D

 	
 	discard() (graphi.abc.Graph method)

E

 	
 	Edge (class in graphi.edge)

 	EdgeError

 	
 	EdgeMeta (class in graphi.edge)

 	edges() (graphi.abc.Graph method)

 	EdgeView (class in graphi.abc)

G

 	
 	get() (graphi.abc.Graph method)

 	Graph (class in graphi.abc)

 	graphi (module)

 	graphi.abc (module)

 	
 	graphi.compatibility (module)

 	graphi.compatibility.python2 (module)

 	graphi.edge (module)

 	graphi.types (module)

 	GraphView (class in graphi.abc)

I

 	
 	items() (graphi.abc.Graph method)

 	
 	ItemView (class in graphi.abc)

N

 	
 	neighbourhood() (graphi.abc.Graph method)

 	NodeError

 	
 	nodes() (graphi.abc.Graph method)

 	NodeView (class in graphi.abc)

R

 	
 	register() (graphi.compatibility.python2.ABCBase class method)

S

 	
 	start (graphi.edge.Edge attribute)

 	
 	stop (graphi.edge.Edge attribute)

U

 	
 	undirected (graphi.abc.Graph attribute)

 	(graphi.abc.GraphView attribute)

 	
 	update() (graphi.abc.Graph method)

V

 	
 	values() (graphi.abc.Graph method)

 	
 	ValueView (class in graphi.abc)

Example Documentation Page

This page unintentionally left blank.

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 GraphI - Python Graph Interface and Types

 		
 Quick Usage Reference

 		
 Creating Graphs and adding Nodes

 		
 Working with Edges and Values

 		
 Graphs as Python Containers

 		
 Changelog

 		
 0.2.0 2017-07-31

 		
 Module Index

 		
 graphi package

 		
 Subpackages

 		
 Submodules

