
graphi Documentation
Release 0.2.0

Max Fischer

Jul 26, 2018

Documentation Topics Overview:

1 Quick Usage Reference 3

2 chainlet Changelog 5

3 graphi 7

4 Frequently Asked Questions 15

5 Indices and tables 17

Python Module Index 19

i

ii

graphi Documentation, Release 0.2.0

Documentation Topics Overview: 1

https://landscape.io/github/MaineKuehn/graphi/master

graphi Documentation, Release 0.2.0

2 Documentation Topics Overview:

CHAPTER 1

Quick Usage Reference

GraphI is primarily meant for working directly on graph data. The primitives you need to familiarise yourself with
are

1. graphs, which are extended containers,

2. nodes, which are arbitrary objects in a graph,

3. edges, which are connections between objects in a graph, and

4. edge values, which are values assigned to connections in a graph.

flighttime⏟ ⏞
graph

[

edge⏞ ⏟
Berlin⏟ ⏞

node

: London⏟ ⏞
node

] = 3900⏟ ⏞
value

This documentation page gives an overview of the most important aspects. The complete interface of GraphI is
defined and documented by Graph.

1.1 Creating Graphs and adding Nodes

You can create graphs empty, via cloning, from nodes or with nodes, edges and values. For many use-cases, it is
simplest to start with a set of nodes:

from graphi import graph

planets = graph("Earth", "Jupiter", "Mars", "Pluto")

Once you have a graph, it works similar to a set for nodes. You can simply add() and discard() nodes:

planets.add("Venus")
planets.add("Mercury")
planets.discard("Pluto")

3

https://docs.python.org/3/library/stdtypes.html#set

graphi Documentation, Release 0.2.0

1.2 Working with Edges and Values

To really make use of a graph, you will want to add edges and give them values. Simply pick a connection from a node
to a node and assign it a value:

store the average distance between planets
planets["Earth":"Venus"] = 41400000

An edge is always of the form start:end, but values can be of arbitrary type. For example, you can easily add
multiple values for a single edge using containers:

add multiple values as an implicit tuple
planets["Earth":"Venus"] = 41400000, 258000000
add multiple values as an explicit, mutable list
planets["Earth":"Mars"] = [78000000, 378000000]

The :-syntax of edges is not just pretty - it ensures that you never, ever accidentally mix up nodes and edges. This
allows you to safely use the same graph[item] interface for nodes and edges.

If you need to define an edge outside of graph accesses, explicitly use Edge:

from graphi import Edge

if Edge["Venus":"Earth"] in planets:
print("Wait, isn't there a pattern for this?")

1.3 Graphs as Python Containers

GraphI is all about letting you handle graphs with well-known interfaces. A graph is a container indexed by either
nodes or edges:

print(planets["Venus":"Earth"])
del planets["Jupiter"]

Even though it contains nodes, edges and values, it presents its nodes first - similar to keys in a dict. However, you
can efficiently access its various elements via views:

print("My father only told me about %d of our planets." % len(planets))
print("But I looked up %d distances between planets:" % len(planets.edges())
for planet_a, planet_b, distances in planets.items():

print(" %s to %s: %s" % (planet_a, planet_b, '-'.join(distances)))

4 Chapter 1. Quick Usage Reference

https://docs.python.org/3/library/stdtypes.html#dict

CHAPTER 2

chainlet Changelog

2.1 0.2.0 2017-07-31

Notes Definition of primary interface, algorithms (Graph.neighbours) will be revised

New Features Added AdjacencyGraph

Major Changes Defined graph container interface

Minor Changes Added documentation

5

graphi Documentation, Release 0.2.0

6 Chapter 2. chainlet Changelog

CHAPTER 3

graphi

3.1 graphi package

3.1.1 Subpackages

graphi.compatibility package

graphi.compatibility.compat_version = sys.version_info(major=2, minor=7, micro=12, releaselevel='final', serial=0)
python version this module has been finalized for

Submodules

graphi.compatibility.python2 module

class graphi.compatibility.python2.ABCBase
Bases: object

Helper class that provides a standard way to create an ABC using inheritance.

A helper class that has ABCMeta as its metaclass. With this class, an abstract base class can be created by
simply deriving from ABC, avoiding sometimes confusing metaclass usage.

Note that the type of ABC is still ABCMeta, therefore inheriting from ABC requires the usual precautions
regarding metaclass usage, as multiple inheritance may lead to metaclass conflicts.

New in version 3.4.

Changed in version 3.3: Subclasses can use register() as a Decorator.

classmethod register(subclass)
Register subclass as a “virtual subclass” of this ABC.

Changed in version 3.3: Returns the registered subclass, to allow usage as a class decorator.

7

https://docs.python.org/3/library/functions.html#object

graphi Documentation, Release 0.2.0

graphi.compatibility.python3 module

graphi.types package

Submodules

graphi.types.adjacency_graph module

3.1.2 Submodules

graphi.abc module

class graphi.abc.AdjacencyList
Bases: dict, _abcoll.MutableMapping

Edge values of nodes to a node in a graph

This represents edges in a graph originating from node as a mapping to their values. For example, the edge
graph[a:b] = c corresponds to adjacency[b] = c for node a.

exception graphi.abc.AdjacencyListTypeError(item)
Bases: exceptions.TypeError

AdjacencyList set with an incorrect type

exception graphi.abc.EdgeError
Bases: exceptions.Exception

Graph edge not found

class graphi.abc.EdgeView(graph)
Bases: graphi.abc.GraphView

View on the edges in a graph

class graphi.abc.Graph(*source, **kwargs)
Bases: _abcoll.Container

Abstract Base Class for graphs representing values of edges between nodes

A Graph is a container for primitive nodes and edges. There are three types of elements handled by a graph:

1. primitive nodes,

2. slice-like edges as pairs of nodes, and

3. primitive edge values.

Both nodes and edge values are conceptually similar to keys and values of dict. However, the concept of node
pairs as edges adds additional functionality. The fixed relation between arbitrary nodes a, b and the directed
pair a:b creates two value-type layers:

1. each node is mapped to all its outgoing edges,

2. each edge is mapped to the respective edge value.

In short, graph[a] provides a collection of edges originating at a, while graph[a:b] provides the specific
edge value from a to b.

8 Chapter 3. graphi

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

graphi Documentation, Release 0.2.0

Note: Many interfaces return the rich Edge type for its added usability. To access an edge value, using slice
such as graph[a:b] is sufficient, however.

Similar to Mappings, nodes are the primary keys of a Graph. As a result, the container interfaces, such as
iter and len, operate on nodes. In general, nodes can be of arbitrary type as long as they are hashable.

By default, edges in a Graph are directed and unique: The edges represented by graph[a:b] and
graph[b:a] are separate with opposite direction. Each edge is unique, i.e. there is only one edge
graph[a:b]. A loop is represented by the edge graph[a:a]. The edge entities stored in the graph may be
arbitrary objects.

As such, the interface of Graph defaults to describing a directed graph. However, other types of graph can be
expressed as well. These generally do not form separate types in term of implementation.

Multigraphs allow for multiple edges between pairs of nodes. In this case, all edge values are containers (such
as list or set) of arbitrary size. Whether a Graph is a graph of containers or a multigraph depends on the
context.

Undirected Graphs do not distinguish between graph[a:b] and graph[b:a]. This can be enforced by
symmetry of edge values, which guarantees that graph[a:b] == graph[b:a] always applies.

g.undirected
Indicates whether Graph g is guaranteed to be undirected, having only symmetric edge values. If True,
g[a:b] is g[b:a] for any nodes a and b in g; the graph enforces this, e.g. g[a:b] = c implies
g[b:a] = c. If False, symmetric edges are allowed but not enforced.

Read-only unless explicitly indicated otherwise.

There are several ways to initialise a new graph; their main difference is which element types are left empty.

Graph()
Create a new empty graph. No nodes, edges or values are filled in.

Graph(graph)
Create a new graph with all nodes, edges and values of graph. The resulting graph is a shallow copy of
graph - the identity of elements is preserved.

Graph(a, b, c, ...)
Graph([a, b, c, ...])
Graph({a, b, c, ...})
Graph(<iterable for a, b, c, ...>)

Create a new graph with nodes a, b, c, d, and so on. No edges or values are created explicitly.

Graph({a: {b: ab_edge, c: ...}, b: {a: ab_edge, ...}})
Graph({a: AdjacencyList({b: ab_edge, c: ...}), b: AdjacencyList(...), ...})

Create a new graph with nodes a, b, c, and so on. Initialize edges to graph[a:b] = ab_edge,
graph[b:a] = ba_edge, and so on.

Note: If only a single argument is provided, graph and mapping initialization is preferred over iterable
initialisation. To initialize a graph with a graph or mapping as the sole node, wrap it in an iterable, e.g.
Graph([graph]).

All implementations of this ABC guarantee the following operators:

len(g)
Return the number of nodes in the graph g.

3.1. graphi package 9

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/glossary.html#term-hashable
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set

graphi Documentation, Release 0.2.0

g[a:b]
Return the value of the edge between nodes a and b. Raises EdgeError if no edge is defined for the
nodes. Undirected graphs guarantee g[a:b] == g[b:a].

g[a:b] = value
Set the value of the edge between nodes a and b to value for graph g.

del g[a:b]
Remove the edge and value between nodes a and b from g. Raises EdgeError if the edge is not in the
graph.

g[a]
Return the edges between nodes a and any other node as an AdjacencyList corresponding to {b:
ab_edge, c: ac_edge, ...}. Raises NodeError if a is not in g.

g[a] = None
g[a] = a
g.add(a)

Add the node a to graph g if it does not exist. Do not add, remove or modify existing edges. Graphs for
which edges are computed, not set, may create them implicitly.

g[a] = {}
g[a] = AdjacencyList()

Add the node a to graph g if it does not exist. Remove any existing edges originating at a from graph g.

g[a] = {b: ab_edge, c: ac_edge, ...}
g[a] = AdjacencyList(b=ab_edge, c=c_edge)

Add the node a to graph g if it does not exist. Set the value of the edge between nodes a and b to
ab_edge, between a and c to ac_edge, and so on. Remove any other edge from a. Raises NodeError
if any of b, c, etc. are not in g.

del g[a]
Remove the node a and all its edges from g. Raises NodeError if the node is not in the graph.

a in g
Return True if g has a node a, else False.

Edge[a:b] in g
Edge(a, b) in g

Return True if g has an edge from node a to b, else False.

iter(g)
Return an iterator over the nodes in g.

In addition, several methods are provided. While methods and operators for retrieving data must be implemented
by all subclasses, methods for modifying data may not be applicable to certain graphs.

add(node)
Safely add a node to the graph, without modifying existing edges

If the node is not part of the graph, it is added without any explicit edges. If the node is already present,
this has no effect.

Note: Graphs which compute edges may implicitly create new edges if node is new to the graph.

clear()
Remove all elements from this graph

copy()
Return a shallow copy of this graph

10 Chapter 3. graphi

graphi Documentation, Release 0.2.0

discard(item)
Remove a node or edge from the graph if it is a member

Parameters item – node or edge to discard from the graph

edges()
Return a new view of the graph’s edges

Returns view of the graph’s edges

Return type EdgeView

get(item, default=None)
Return the value for node or edge item if it is in the graph, else default. If default is not given, it
defaults to None, so that this method never raises a NodeError or EdgeError.

Parameters

• item – node or edge to look up in the graph

• default – default to return if item is not in the graph

items()
Return a new view of the graph’s edges and their values

Returns view of the graph’s edges and their values

Return type ItemView

neighbourhood(node, distance=None)
Yield all nodes to which there is an edge from node in the graph

Parameters

• node – node from which edges originate.

• distance – optional maximum distance to other nodes.

Returns iterator of neighbour nodes

Raises NodeError – if node is not in the graph

When distance is not None, it is the maximum allowed edge value. This is interpreted using the <=
operator as graph[edge] <= distance.

If there is a valid edge graph[node:node] <= distance, then node is part of its own neighbour-
hood.

nodes()
Return a new view of the graph’s nodes

Returns view of the graph’s nodes

Return type NodeView

undirected = False
whether this graph is undirected, having only symmetric edges

update(other)
Update the graph with the nodes, edges and values from other, overwriting existing elements.

Parameters other (Graph or ItemView) – graph or items from which to pull elements

values()
Return a new view of the values of the graph’s edges

Returns view of the values of the graph’s edges

3.1. graphi package 11

graphi Documentation, Release 0.2.0

Return type ValueView

class graphi.abc.GraphView(graph)
Bases: _abcoll.Sized

Dynamic view on the content of a Graph

View objects represent a portion of the content of a graph. A view allows to work with its scope without copying
the viewed content. It is dynamic, meaning that any changes to the graph are reflected by the view.

Each view works only on its respective portion of the graph. For example, edge in nodeview will always
return False.

len(graphview)
Return the number of nodes, node pairs or edges in the graph.

x in graphview
Return True if x is a node, node pair or edge of the graph.

iter(graphview)
Return an iterator over the nodes, node pairs or edges in the graph.

Each view strictly defines the use of nodes, edges or values. As such, edges are safely represented as a tuple of
start and end node.

undirected

class graphi.abc.ItemView(graph)
Bases: graphi.abc.GraphView

View on the edges and values in a graph

Represents edges and their value as a tuple of (tail, head, value). For example, the edge
graph[a:b] = c corresponds to the item (a, b, c).

exception graphi.abc.NodeError
Bases: exceptions.Exception

Graph node not found

class graphi.abc.NodeView(graph)
Bases: graphi.abc.GraphView

View on the nodes of a graph

class graphi.abc.ValueView(graph)
Bases: graphi.abc.GraphView

View on the values of edges in a graph

graphi.edge module

class graphi.edge.Edge(start, stop, step=None)
Bases: object

An edge in a graph as a pair of nodes

Parameters

• start – the start or tail of an edge

• stop – the stop or head of an edge

• step – currently unused

12 Chapter 3. graphi

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object

graphi Documentation, Release 0.2.0

This is a verbose interface for creating edges between nodes for use in a graph. It allows using slice notation
independent of a graph:

>>> atb = Edge[a:b]
>>> a2b = Edge(a, b)
>>> graph[a2b] = 1337
>>> graph[a:b] == graph[atb] == graph[a2b] == graph[Edge[a:b]] == graph[Edge(a,
→˓b)]
True

A Edge can also be used for explicit containment tests:

>>> Edge[a:b] in graph
True

In addition to their slice-like nature, Edge is iterable and indexable. This allows for easy unpacking:

>>> edge = Edge[a:b]
>>> tail, head = edge

Note: This class creates a representation of an edge as a connection between nodes. Edge values can be
arbitrary objects.

Warning: Even though Edge behaves like a slice in graphs, builtin containers such as list cannot use
a Edge.

start

stop

class graphi.edge.EdgeMeta
Bases: type

Metaclass for Edge to support Edge[a:b]

GraphI is a lightweight graph library - it is suitable to model networks, connections and other relationships. Com-
pared to other graph libraries, GraphI aims for being as pythonic as possible. If you are comfortable using list,
dict or other types, GraphI is intuitive and straight-forward to use.

create a graph with initial nodes
airports = Graph("New York", "Rio", "Tokyo")
add connections between nodes
airports["New York":"Rio"] = timedelta(hours=9, minutes=50)
airports["New York":"Tokyo"] = timedelta(hours=13, minutes=55)

At its heart, GraphI is built to integrate with Python’s data model. It natively works with primitives, iterables,
mappings and whatever you need. For example, creating a multigraph is as simple as using multiple edge values:

add multiple connections between nodes
airports["Rio":"Tokyo"] = timedelta(days=1, hours=2), timedelta(days=1, hours=3)

With its general-purpose design, GraphI makes no assumptions about your data. You are free to use whatever is
needed to solve your problem, not please data structure.

3.1. graphi package 13

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

graphi Documentation, Release 0.2.0

14 Chapter 3. graphi

CHAPTER 4

Frequently Asked Questions

Yet another graph library? The goal of GraphI is not to be another graph library, but to provide an intuitive graph
interface. Working with complex graphs should be as easy for you as working with any other primitive type.

Where are all the algorithms? First and foremost, GraphI is designed for you to work on graph data instead of
pre-sliced storybook data. GraphI implements only algorithms that

1. are fundamental building blocks for advanced algorithms, and/or

2. benefit from knowledge of internal data structures.

What about performance? At its core, GraphI uses Python’s native, highly optimized data structures. For any non-
trivial graph algorithm, the provided performance is more than sufficient.

From our experience, performance critical code is best run with PyPy. This will not just optimize isolated pieces,
but the actual combination of your algorithm and GraphI as a whole.

15

https://pypy.org

graphi Documentation, Release 0.2.0

16 Chapter 4. Frequently Asked Questions

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

Documentation built from graphi 0.2.0 at Jul 26, 2018.

17

graphi Documentation, Release 0.2.0

18 Chapter 5. Indices and tables

Python Module Index

g
graphi, 7
graphi.abc, 8
graphi.compatibility, 7
graphi.compatibility.python2, 7
graphi.edge, 12
graphi.types, 8

19

graphi Documentation, Release 0.2.0

20 Python Module Index

Index

A
ABCBase (class in graphi.compatibility.python2), 7
add() (graphi.abc.Graph method), 10
AdjacencyList (class in graphi.abc), 8
AdjacencyListTypeError, 8

C
clear() (graphi.abc.Graph method), 10
compat_version (in module graphi.compatibility), 7
copy() (graphi.abc.Graph method), 10

D
discard() (graphi.abc.Graph method), 10

E
Edge (class in graphi.edge), 12
EdgeError, 8
EdgeMeta (class in graphi.edge), 13
edges() (graphi.abc.Graph method), 11
EdgeView (class in graphi.abc), 8

G
get() (graphi.abc.Graph method), 11
Graph (class in graphi.abc), 8
graphi (module), 7
graphi.abc (module), 8
graphi.compatibility (module), 7
graphi.compatibility.python2 (module), 7
graphi.edge (module), 12
graphi.types (module), 8
GraphView (class in graphi.abc), 12

I
items() (graphi.abc.Graph method), 11
ItemView (class in graphi.abc), 12

N
neighbourhood() (graphi.abc.Graph method), 11
NodeError, 12

nodes() (graphi.abc.Graph method), 11
NodeView (class in graphi.abc), 12

R
register() (graphi.compatibility.python2.ABCBase class

method), 7

S
start (graphi.edge.Edge attribute), 13
stop (graphi.edge.Edge attribute), 13

U
undirected (graphi.abc.Graph attribute), 11
undirected (graphi.abc.GraphView attribute), 12
update() (graphi.abc.Graph method), 11

V
values() (graphi.abc.Graph method), 11
ValueView (class in graphi.abc), 12

21

	Quick Usage Reference
	chainlet Changelog
	graphi
	Frequently Asked Questions
	Indices and tables
	Python Module Index

